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Fractal Dimension at the Phase Transition 
of Inhomogeneous Cellular Automata 

L. R. da Silva 1'2 

Received May 11, 1988 

For random binary mixtures of cellular automata in the square lattice, 
calculations are made of the fractal dimensions associated with the damage 
spreading and the propagation time of damage at the transition to chaos. Two 
rules are mixed and universalities of these quantities are sought with respect to 
change of the rules. 
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1. I N T R O D U C T I O N  

Inhomogeneous cellular automata have been the subject of much interest in 
the recent years. ~t) In this model one associates to each site of a given 
lattice a Boolean variable a /which  takes the values 0 or 1. The evolution 
for each site ai is determined by a rule randomly chosen among the 
permitted Boolean functions of K inputs, these being the lattice neighbor 
sites of ai. This model presents a transition between a chaotic and frozen 
phase. ~2'3) The frozen phase is characterized by the fact that it is stable with 
respect to perturbations (damages), whereas in the chaotic phase it is not. 

At the transition point some quantities are fractal. ~2'4'5) In particular, 
de Arcangelis and Stauffer ~4~ showed numerically that triangular and 
square lattices of the Kauffman model have the same critical exponents and 
they believe that this property is universal in relation to other lattices. 
Da Silva et al. ~3) checked for many mixtures of only two rules whether a 
transition to chaos occurs. Now I find the fractal dimensions at this trans- 
ition and instead of changing the lattices I vary the rules. 
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2. M E T H O D  

I calculate the phase transition in two ways, using the damage (6) as a 
disorder parameter. This quantity is defined as the global effect observed in 
the time evolution of the system due the introduction of a single error. 
Quantitatively one can measure the damage by counting the number of 
sites differing between two samples that evolve simultaneously subjected to 
the same rules and which are different in only one or few spins at time 
t = 0 .  

In the first method I use the actual damage (6) and as initial damage I 
take only one randomly selected spin. The value of Pc for initial damage 
going to zero is obtained by the use of the extrapolation function in ref. 6. 
In the second case I calculate Pc by the use of the "damage spreading in a 
gradient" method. (7) In this method the choice of the initial damage is more 
arbitrary. ! use as initial damage one entire line because the convergence is 
faster, and as disorder parameter the total damage. (6) The values of Pc 
obtained by the two methods are compatible. 

I am interested in calculating two fractal dimensions defined at p = Pc 
the 

M ~ L  D 

and 

"[ ~ L ~  

where M is the actual damage at t = r, ~ being the time for a damage 
starting in the center to propagate to the boundaries, and L is the size of 
the System. 

For  the L x L square lattice I check how long it takes for the damage 
to reach the top of the system. This time I call r and the corresponding 
actual damage M. 

Once I have Pc, I calculate M and r taking as initial damage a whole 
lattice line in the center of the square lattice because then statistics is 
better.~5) 

3. R E S U L T S  

I start by analyzing the random mixture between the five-input 
generalized OR function [-which is true (1) if at least one of its five 
arguments is true] and the five-input generalized XOR function (3~ (which is 
true if an odd number of its arguments is true). These five sites are the 
central site and its neighbors. I mix these two rules randomly in such way 
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that one has OR with probability p and XOR with probability 1 - p. The 
phase transition frozen-chaotic occurs for Pc = 0.390 + 0.002. 

Figure 1 shows the L evolution for the effective exponents D(L), D'(L) 
with L the size of the system. I obtain the limit (L--* ~ )  values 
D ( o o ) ~  1.882 and D ' ( o o ) ~  1.096. 

Similarly, I studied three more mixtures of two binary variable 
functions. In the first I take with probability p the rule that gives true if an 
even number of neighbor sites is true and false (0) otherwise and with 
probability 1-p the rule which is true only when three or four of the four 
input sites are true. The onset to chaos occurs at p c =  0.465_ 0.002. The 
results corresponding to Fig. 1 are shown in Fig. 2 with D(L)= 1.905 and 
D'(L) = 1.163. 

As the third example I study the rules used by Hartman and 
�9 (8) Vichmac to discuss inhomogeneous automata. In this case ! take with 

probability p the five-input XOR rule and with probability 1-p the four- 
input logical function AND. The onset to chaos is obtained for 
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Fig. 1. Fractal dimensions D (O)  and D' (O)  at the phase transition in which five-input 
rules XOR (concentration p) and OR (concentration 1 - p) are randomly mixed, as function 
of 1/L. The transition to chaos occurs at Pc =0.390 + 0.002. The data are with error bars 
A =0.02 for D and A'=0.1  for D' for small L (L~300) ,  increasing with the size L. I used 
10,000 samples for L = 180, decreasing to 1000 samples for L = 600. Straight-line fits of these 
points give D = 1.882 and D' = 1.096 for L --* oo. 
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Fig. 2, Result of mixing the four-input functions N O T ( X O R )  (concentration p) and the rule 
that is true only when three or four sites are true (concentration l - p ) .  One gets 
Pc = 0.465 _+_ 0,002. Statistics and error bars are the same as in Fig. 1. Here D = 1.905 and 
D ' =  1.163 for L ~ o o .  
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Fig. 3. Analogous results to Figs. 1 and 2. The four-input XOR (probability p)  is mixed with 
the four-input function AND (probability 1 - p ) .  One obtains p~=0.577 +0.002. Statistics 
and error bars are the same as in the previous examples. D = 1.878 and D' = 1.148 for L --* ~ ,  
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pc= 0.577 + 0.002. The values for D(L)= 1.878 and D' (L)= 1.148 can be 
seen in Fig. 3. 

I have also analyzed the rules used by Stauffer m) to discuss the concept 
of "forcing rules." One takes with probability p the rule that is true if an 
even number of neighbor sites is true and with probability 1-p the rule that 
is true if at most two of the four neighbors are true. Analogous results as in 
the previous examples are found at Pc ~ 0.33. 

Thus, the thresholds for the transition to chaos disagree with the 
random percolation threshold pc=0.593 or pc=0.407. However, the 
exponents D and D' agree with the well-known fractal dimensions 1.896 
and 1.1 of the mass or the chemical distance in random percolation. For 
the Kauffman model, these exponents are 1.6 and 1.5. In other words, 
binary mixtures of cellular automata are in the universality class of random 
percolation, and not in the universality class of the Kauffman model. 

4. CONCLUSIONS 

I have studied the critical behavior at the transition to chaos of several 
binary mixtures of cellular automata. I analyzed the fractal dimensions 
associated with the damage spreading and the propagation time of damage, 
D and D', respectively. For the four cases studied I found these quantities 
to be universal. I showed that the universality class of these automata is the 
same as the universality class of random percolation and not that of the 
Kauffman model as one have might guessed. I believe that this result is 
general with respect to other combinations of binary mixtures of cellular 
automata. 

The study of other combinations of rules or a general proof of the 
results presented here would be interesting. 
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